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multiplexing is limited by the number of colors—at most 5–10—
that can be resolved by microscopy.

Here we describe MAPseq (Multiplexed Analysis of Projec-
tions by Sequencing), a novel approach in which the speed
and parallelization of high-throughput sequencing are exploited
for brain mapping (Zador et al., 2012). MAPseq achieves multi-
plexing by using short, random RNA barcodes to uniquely label
individual neurons (Mayer et al., 2015; Walsh and Cepko, 1992;
Zador et al., 2012) (Figure 1B). The key advantage of using barc-
odes is that their diversity grows exponentially with the length of
the sequence, overcoming the limited diversity of the resolvable
color space. The pool of unique barcode identifiers is effectively
infinite; even a 30-nt sequence has a potential diversity of
430z1018 barcodes, far surpassing the !108 neurons in the
mouse brain (Herculano-Houzel et al., 2006). Because high-
throughput sequencing can quickly and inexpensively distin-
guish these barcodes, with MAPseq we can potentially read
out the projections of thousands or even millions of individual
neurons in parallel within a single brain (Figure 1C).

In MAPseq, we uniquely label neurons in a source region by
injecting a viral library encoding a diverse collection of barcode

sequences. The barcode mRNA is expressed at high levels
and transported into the axon terminals at distal target projection
regions (Figure 1D). To read out single-neuron projection pat-
terns, we then extract and sequence barcode mRNA from the in-
jection site, as well as from each target region of interest. Spatial
resolution of MAPseq is limited mainly by the precision of target
dissection. Although MAPseq, like GFP tracing, does not distin-
guish fibers of passage, we minimize their contribution by avoid-
ing large fiber bundles during the dissection of target areas.
Using this procedure, the brain-wide map of projections from a
given area can be determined in less than a week. By reformulat-
ing projection mapping as a problem of sequencing, MAPseq
harnesses advances in high-throughput sequencing to permit
efficient single-neuron circuit tracing.

RESULTS

As a proof of principle, we appliedMAPseq to the locus coeruleus
(LC), a small nucleus in the brainstem that is the sole source of
noradrenaline to the neocortex (Foote and Morrison, 1987). Early
bulk tracing experiments revealed that the LC projects broadly

Figure 1. Barcoding Allows High-Throughput Single-Neuron Tracing
(A) Identical bulk mapping results can arise from different underlying projection patterns.

(B) Single-neuron resolution can be achieved by randomly labeling neurons with barcodes and reading out barcodes in target areas.

(C) The expected fraction of uniquely labeled cells is given by F = (1-1/N)(k-1), where N is the number of barcodes and k is the number of infected cells, assuming a

uniform distribution of barcodes. The number of neurons for variousmouse brain areas is indicated according to references (Herculano-Houzel et al., 2006; Schüz

and Palm, 1989) (A1, primary auditory cortex; Ctx, neocortex).

(D) In MAPseq, neurons are infected at lowMOI with a barcoded virus library. Barcode mRNA is expressed, trafficked, and can be extracted from distal sites as a

measure of single-neuron projections.
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- Microscales: 
- Electron microscopes 
- Cell staining 
- Viral neuronal tracing 

- Mesoscales: 
- Tract-tracing 
- High-field MRI 

-  Macroscales: 
- Diffusion MRI 
- Diffusion tensor imaging

Research has successfully constructed the full 
connectome of one animal: the roundworm 
Caenorhabditis elegans (White et al., 1986,[2] Varshney 
et al., 2011[3]). Partial connectomes of a mouse 
retina[4] and mouse primary visual cortex[5] have also 
been successfully constructed. Other 
reconstructions, such as Bock et al.'s 2011 complete 
12 terabyte dataset, are publicly available through 
services such as NeuroData.[6]

Kebschull et al, 2016

“…to map the human cerebral cortex, HCP researchers 
analysed 6 terabytes of MRI data from 210 healthy 
young adults, says Kamil Ugurbil, the HCP's co-
principal investigator at the University of Minnesota in 
Minneapolis. Labs can download those data from the 
project's website or, for larger data sets, order 8-
terabyte hard drives for US$200 apiece…”

https://en.wikipedia.org/wiki/Nematode
https://en.wikipedia.org/wiki/Caenorhabditis_elegans
https://en.wikipedia.org/wiki/Connectome#cite_note-Royal_Society_B_1986-2
https://en.wikipedia.org/wiki/Connectome#cite_note-PLoS_Computational_Biology_2011-3
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https://en.wikipedia.org/wiki/Connectome#cite_note-Brig-4
https://en.wikipedia.org/wiki/Primary_visual_cortex
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https://biomedia.doc.ic.ac.uk/brain-parcellation-survey/

“Using resting-state functional MRI (rs-fMRI) data and several quantitative evaluation techniques, 10 
subject-level and 24 groupwise parcellation methods are evaluated at different resolutions. The 
accuracy of parcellations is assessed from four different aspects: (1) reproducibility across different 
acquisitions and groups, (2) fidelity to the underlying connectivity data, (3) agreement with fMRI task 
activation, myelin maps, and cytoarchitectural areas, and (4) network analysis.”

Parcellations are SMALL!
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errors and require expert curation for reliable detection of synaptic 
couplings. Alternative approaches use RNA barcoding to label projec-
tions of individual neurons, which may allow for high-volume tracing 
of neuronal circuits at single-cell resolution16.

Complementary mesoscale efforts to map more extended portions 
of the nervous systems of several model organisms have employed 
large-scale optical imaging as well as quantitative histological tract 
tracing. High-throughput tracing and imaging approaches (which 
require careful monitoring of sensitivity and specificity) have resulted 
in network data sets recording the connections among ‘local process-
ing units’ in Drosophila17 as well as interregional projections in the 
mouse18. A different approach builds on expertly curated neuroinfor-
matics databases of anatomical observations to construct aggregated 
data sets of network connectivity, such as in rat19 and macaque mon-
key20. Quantitative assessment of tract tracing experiments reveals 
relatively dense networks that include projections ranging in strength 
over six orders of magnitude21. Finally, there is continuous improve-
ment of methodology in diffusion imaging and tractography, which 
allows the inference of the trajectory and strength of white matter pro-
jections in the human brain22. Although subject to many experimental 
and statistical limitations23 and interpretational pitfalls24, compara-
tive studies have suggested that representations of long-distance con-
nectivity derived from invasive histological methods and noninvasive 
imaging of neuroanatomical structure are significantly related25.

Advances in optical cellular imaging have enabled recordings of 
neuronal activity in extended functional circuits26, in some cases 
spanning the whole organism27. Imaging of Ca2+ dynamics, as well 
as genetically encoded fluorescent reporters of membrane voltages, 
generates dynamic functional data from hundreds to thousands of 
neurons. Following processing steps such as image registration and cell 
sorting, the data can be represented as time traces that can be subjected 
to statistical time series analyses. Parallel recordings from hundreds of 
neurons enable computational strategies that identify and character-
ize functional interactions and statistical dependencies between neu-
rons. The resulting functional networks can be examined for modular 
organization, as well as for evidence of coherent network states and 
patterned temporal dynamics. Functional network analysis has pro-
gressed most strongly in applications to noninvasive electromagnetic 
or functional magnetic resonance imaging recordings from the human 
brain. Major themes include the definition of coherent subnetworks 
spanning the whole brain28 that exhibit changing topology in condi-
tions of rest (spontaneous activity) and task demand29, or in relation to 
visual input30. Methodological advances involve improved sensitivity 
in measures of statistical dependence, inference of causal links, and 
greater temporal resolution. An important frontier is the analysis of 
sequences of functional networks that change across time.

Linking elements and interactions in the brain to different domains 
of behavior has advanced from classic univariate (one region, one 
behavior) to bivariate (connectivity, behavior) and finally to multi-
variate frameworks31. Large-scale studies of brain-behavior relations 
and behavior-behavior dependencies, although still in their infancy, 
promise to provide a rich database for mapping the relations among 
brain processes and their contributions to perception, action and cog-
nition. In one such study carried out in Drosophila, the roles of neurons 
in triggering a diverse set of behaviors was systematically investigated 
by optogenetically stimulating individual neuronal cell lines and 
recording the associated behavioral responses32. Machine-learning 
techniques were then applied to extract statistically robust relations 
between neuron lines and behavioral phenotypes, resulting in a neu-
ron-behavior atlas. This work illustrates the utility of using relational 
data to establish mappings from clusters of neural elements to clusters 

of behavioral phenotypes. On a very different organizational scale, 
brain-behavior relations have been approached through meta-analyses 
of large repositories of human neuroimaging experiments reporting 
patterns of brain activation in relation to different domains of behavior 
and cognition. Aggregating brain imaging data from thousands of such 
studies allowed the construction of ‘co-activation networks’, whose 
major components and overall network topology strongly resembled 
functional networks derived from resting-state (task-free) record-
ings33. Finally, as demonstrated in a study of chemotaxis in C. elegans34, 
our understanding of the relationships between neural dynamics and 
observable behaviors can benefit from integrating data capturing the 
topology of anatomical networks with behavioral data acquired as the 
organism is interacting with its environment.

Brain networks may be viewed as ‘intermediate phenotypes’35 that 
are situated between the domains of genetics and molecular systems, 
and the expression of individual and collective behavior in the envi-
ronment. As such, brain networks mediate the causal effect of genet-
ics on behavior and vice versa. For example, genetic mutations may 
cause changes in network topology that in turn drive alterations in 
behavior. Indeed, network science has made substantial advances into 
characterizing both molecular and social systems, and the effect of 
these advances are beginning to be felt at the intermediate scales of 
mesoscale neural circuits and large-scale brain systems.
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Figure 1 Networks on multiple spatial and temporal scales. Network 
neuroscience encompasses the study of very different networks 
encountered across many spatial and temporal scales. Starting from the 
smallest elements, network neuroscience seeks to bridge information 
encoded in the relationships between genes and biomolecules to the 
information shared between neurons. It seeks to build a mechanistic 
understanding of how neuron-level processes give rise to the structure 
and function of large-scale circuits, brain systems and whole-brain 
structure and function. However, network neuroscience does not stop 
at the brain, but instead asks how these patterns of interconnectivity 
in the CNS drive and interact with patterns of behavior: how perception 
and action are mutually linked and how brain-environment interactions 
influence cognition. Finally, network neuroscience asks how all of these 
levels of inquiry help us to understand the interactions between social 
beings that give rise to ecologies, economies and cultures. Rather than 
reducing systems to a list of parts defined at a particular scale, network 
neuroscience embraces the complexity of the interactions between the 
parts and acknowledges the dependence of phenomena across scales. 
Box dimensions give outer bounds of the spatial and temporal scales at 
which relational data are measured and interactions unfold, and over which 
networks exhibit characteristic variations and dynamic changes. Inspired  
by an iconic image of neuroscience recording methods, last updated in ref. 1.  
ECOG, intracranial electrocorticography; EEG, electroencephalography; fMRI, 
functional magnetic resonance imaging; fNIRS, functional near-infrared 
spectroscopy; MEG, magnetoencephalography.
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At molecular scales, the arrival of comprehensive molecular and 
genomic data for many organisms, including humans, has ushered 
in the new discipline of systems biology36, which combines high-
throughput measurements of molecular data with modeling and com-
putational analysis. Systems biology recognizes that most biological 
functions and phenotypes cannot be reduced to the action of individ-
ual proteins or biomolecules, but rather emerge from their interactions 
in molecular complexes and in cells, giving rise to spatiotempo-
ral patterns of gene expression, tissue growth and differentiation,  
and other integrative biological processes. In systems biology, net-
works are core ingredients for analysis and modeling37, for example, 
in proteomics38, mapping of gene-disorder relationships39 and genet-
ics-based comorbidity studies40. The architecture of these networks 
at the molecular scale affects higher order functions measured at 
the larger scale of functional brain areas. Here, network interactions 
offer important insights into the biological mechanisms associated 

with several common brain disorders, including schizophrenia41 and 
autism42. Convergent evidence suggests that the biological bases of 
psychiatric illness cannot be fully accounted for by small numbers of 
mutations or risk factors. Instead, these disorders involve disturbances 
in biological networks on multiple spatial scales.

Social data, aggregated into networks, capture important aspects 
of individual and collective behavior. The ubiquity of digital traces 
of human behavior has led to a rapid expansion of computational 
social science43, a new discipline that leverages methods and tools 
from statistical physics and computer science to observe and pre-
dict the collective behavior of organizations and societies. Going 
beyond small-scale analyses of data laboriously gathered from indi-
viduals in laboratory settings, computational social science relies 
on the parallel and pervasive collection of rich spatiotemporal data  
capturing the organization and dynamics of large-scale social sys-
tems. The approach has promise in providing new means to monitor  
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Figure 2 Network measurement, construction and analysis. Top, network neuroscience begins with the collection of relational data among elements of a 
neurobiological system. These data may refer to statistical associations among genes, physical binding events among macromolecules, anatomical networks 
of synaptic connections or inter-regional projections, multi-dimensional time series and their statistical dependencies or causal relations, or links in behavior, 
such as dynamic couplings among sensors and effectors in individuals or collective social interactions. Middle, once collected, relational data are generally 
subject to normalization, artifact and noise reduction before being assembled into the mathematical form of a graph or network, consisting of nodes (elements) 
and edges (their relations). Common examples are transcriptome and interactome networks, connectomes, networks of functional and effective connectivity, 
and social networks. Bottom, the common mathematical framework of graph theory offers a set of measures and tools for network analysis. As we argue in this 
review, descriptive measures such as the ones shown here are but a first step toward more powerful analysis and modeling approaches, such as generative 
modeling, prediction and control. Finally, network data are generally shared in large repositories, and numerous follow-up tool kits allow sophisticated 
visualization and simulation. Continual refinement of measurement, construction and analysis techniques ensures that the shape of this diagram will change 
as the field of network neuroscience matures. Image of functional/effective connectivity reproduced from ref. 70, Society for Neuroscience.
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issue concerns the widespread practice of thresholding
functional networks to retain only a small percentage
(often less than 10%) of the strongest functional connec-
tions. In addition, the remaining connections are then set
to unit strength, resulting in a greatly sparsified binary
network which is then subjected to standard graph
analysis. Since the appropriate value of the threshold is
a free and completely undetermined parameter, most
practitioners vary the threshold across a broad range
and then compute and compare graph metrics for the
resulting networks. The practice of thresholding func-
tional networks has two immediate consequences, a
much sparser topology which then tends to result in
more and more separate clusters or modules, and a
topology that discards all (even strong) negative corre-
lations. While the status of negative correlations in rest-
ing fMRI remains controversial,35-38 it could be argued
that the presence of an anticorrelation between two
nodes does contribute information about their commu-
nity membership. Building on this idea, variants of the
Q-metric and other related measures that take into
account the full weight distribution of a network have
been proposed.39 These new metrics can also be applied
to functional networks regardless of their density
(including fully connected networks), thus eliminating
the need for thresholding entirely.
The second issue relates to the optimization of the mod-
ule partition given a cost or quality metric like
Newman’s Q. Studies of various real-world networks
have shown that identifying the single optimal partition
can not only be computationally difficult, but that many
real networks can be partitioned at near-optimal levels
in a number of different or “degenerate” ways.40

Aggregating these degenerate solutions can provide
additional information about the robustness with which
a given node pair is affiliated with the same or a differ-
ent module. This idea has been developed further into a
quantitative approach called “consensus clustering.”41

Consensus clustering has not yet been widely applied to
brain networks,39,42 but it may soon become a useful tool
since it provides information about the strength with
which individual neural elements affiliate with their
“home community.” An attractive hypothesis is that ele-
ments with generally weak affiliation are good candi-
dates to assume functional roles as hub nodes that cross-
link diverse communities.
The next three sections of the article will review our cur-
rent knowledge about the network architecture of struc-

tural brain networks, how structural networks relate to
functional networks in both rest and task conditions, and
what we can learn by applying network approaches to
clinical problems.

Mapping the network structure 
of the human brain

Due to the invasive nature of most classical anatomical
methods like tract tracing, these methods cannot be
applied to large samples of individual brains and they
cannot be deployed in vivo, hence rendering tract tracing
studies in human populations and relating structural net-
work features to brain dynamics or behavior virtually
impossible. Tract tracing has an important role to play
for the study of anatomical connections in animal mod-
els, particularly in non-human primates,43 and it is of vital
importance for validating anatomical data derived from
noninvasive imaging technology.44 To the extent that
such validation has been carried out, indications are that
most projections identified by noninvasive imaging have
counterparts in white matter fascicles described by clas-
sical anatomy.
Most studies on human brain connectomics have been
carried out by charting structural connections on the
basis of data coming from diffusion MRI and tractogra-
phy (Figure 4).45-48 Diffusion MRI and tractography infer

252

S t a t e  o f  t h e  a r t

Figure 4. From imaging structural brain connectivity to network metrics.
The three plots show three different ways to represent struc-
tural connections in anatomical space. (A) A set of tractogra-
phy streamlines. Red, green and blue indicate fibers running
along the medial-lateral, anterior-posterior, and dorsal-ventral
direction, respectively. (B) A network diagram of nodes (red)
and edges (blue), with edge width indicating the edge
strength, calculated as the streamline density linking each
node pair. For clarity, only the strongest edges are shown. (C)
A plot representing a nodal network measure, in this case the
node betweenness centrality. Highly central nodes are found
in medial parietal as well as cingulate and frontal cortex. Data
replotted from ref 56.

A B C



ingly important in the analysis of functional in-
tegration because the underlying model defines
the mechanisms of neuronal coupling. We will
return to this in a later section.

Recent studies of large-scale human brain net-
works have mostly had their bases in structural
and functional connectivity, using in vivo neuro-
imaging. However, structural connectivity based
on diffusion MRI cannot resolve intracortical or
intrinsic connections. It is also potentially blind to
weak long-range axonal connections, which may
serve as weak ties for global integration (11, 12).
Conversely, functional connectivity (statistical de-
pendencies) may exist between anatomically un-
connected nodes, for example, synchronous activity
in two (anatomically unconnected) nodes that is
driven by common sources, polysynaptic connec-
tions, or other configurations of bidirectional circuits
(13). Neither structural nor functional connectiv-
ity in large-scale networks specify the direction or
sign (inhibitory or excitatory) of underlying di-
rected (effective) connectivity.

Despite its many challenges, our current con-
nectivity mapping ability is analogous to cartog-
raphy in the Age of Exploration. The gross atlas,
even if not comparable to Google Earth, delin-
eated the boundary of the world, directed new
explorations, and changed the world from an un-
fathomable entity into a tangible object, amenable
to further charting and exploration. Likewise, tech-
nical advances in neuroimaging have led researchers
to regard the human brain as a system that can be
explored as a whole, leaving the details for the
fullness of time.

Structural Organization
The analysis of network topology in the brain (14)
highlights the principles underlying its organi-
zational properties—such as efficient information
passing, robustness, adaptability, resilience—and,
more importantly, the divergent functionalities
within a fixed structure. Many characterizations
suggest that the structural architecture of the brain
may reflect a compromise between wiring costs
and the computational imperatives above (15).
Structural brain networks exhibit small-worldness
(14) and modularity (15). Small-worldness indi-
cates a short average path length between all node
pairs, with high local clustering, whereas modu-
larity denotes dense intrinsic connectivity within a
module but sparse, weak extrinsic connections
between modules.

More recently, the rich-club phenomenonmay
offer a more cogent description of networks that
facilitate dynamic and diverse brain functions
(Fig. 1C), in which rich-club hubs (heavily con-
nected nodes) are highly interconnected to pro-
mote global communication amongmodules (16).
Rich-club organization is seen in a wide range
of neuronal systems from the neuronal systems
of Caenorhabditis elegans (17) and the macaque
cerebral cortex (18) to the human brain (16). In
humans, rich-clubs have been found to include

the precuneus, superior frontal and superior pa-
rietal cortex, hippocampus, putamen, and thala-
mus (16) (Fig. 2B).

Several organizational properties of structural
brain networks have been studied; for example, a
computational modeling study showed a relatively

Fig. 1. Node, edge, and organization in the brain network. (A) Schematic of the multiscale
hierarchical organization of brain networks: from neurons and macrocolumns to macroscopic brain areas.
A network is composed of nodes and their links, called edges. A node, defined as an interacting unit of a
network, is itself a network composed of smaller nodes interacting at a lower hierarchical level. (B)
Depictions of “edges” in a brain network, as defined by three types of connectivity: structural, functional,
and effective. Structural connectivity refers to anatomical connections and (macroscopically) is usually
estimated by fiber tractography from diffusion tensor MRI (DTI). These connections are illustrated with
broken lines in the bottom images. Functional and effective connectivity are generally inferred from the
activity of remote nodes as measured by using BOLD-fMRI or EEG/MEG signals. Functional connectivity,
defined by the correlation or coherence between nodes, does not provide directionality or causality and is
therefore depicted without arrows. Because effective connectivity is estimated by using a model of
neuronal interactions, it can evaluate directionality. This is illustrated by the one-sided arrows. Adjacency
(or connectivity) matrices subserve graph theoretical analyses of brain systems and encode structural and
functional connectivity between pairs of nodes. (C) Rich-club organization describes many aspects of the
hierarchical (modular) brain. As shown in this (simplified) schematic, the brain is highly modular, with
nodes integrated locally through strong short-range edges (thin gray lines). Rich-club hubs are densely
interconnected among themselves (mainly through long-range edges in thick black lines). These hubs
facilitate intermodular communication or global integration that may be contextualized via weaker long-
range connections (dotted lines). Brain functions can be characterized by local integration within segregated
modules for specialized functions and global integration of modules for perception, cognition, and action.
Context-dependent global integration recruits a subset of modules with different configurations that
nuances the collaboration between different modules. See also (2).
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high resilience to random node removal (attack)
(19). However, there appears to be a greater vulner-
ability and topological reorganization after dam-
age to central hubs or rich clubs (16, 19). In a study
of schizophrenia, the connection density among rich-
club hubswas significantly reduced (20), suggesting
a disruption of global communication in this disease.

Although the rich-club phenomenon is con-
sistent with hierarchical brain architectures (21),
it largely has its basis in “strong” structural con-
nectivity, measured with neuroimaging. In con-
trast to noninvasive human studies, recent tracing
studies in the macaque brain suggest a denser
connectivitymatrix, withmany “weak” long-range
connections (11). These weak long-range con-
nections may play an important role in hierarchi-
cally organized functional modules (12).

Despite differences in detail, the overall con-
cept of modules (defined by dense short-range

connections) that are integrated by relatively sparse
long-range connections remains valid. We use the
term rich-club phenomenon in this context, not as
a mathematical definition. Notably, the modular,
hierarchical, and rich-club–like brain organization
may furnish the structural constraints under which
functional connectivity emerges.

Structure Function Convergence
Like the Lake Isle of Innisfree, the resting brain
was originally thought to be calm and peaceful.
This view, however, ignores turbulent interac-
tions beneath the surface. Although fMRI mea-
sures the “resting-state” brain, what is measured
is restless (22). When endogenous fluctuations in
resting-state BOLD signals are decomposed (by
using independent component analysis), they re-
veal repertoires of spatial modules, that is, clus-
ters of nodes fluctuating synchronously, called

intrinsic connectivity networks (ICNs). Considera-
ble correspondence can be found between ICNs
and task-related neurocognitive modules (23, 24).
Some representative ICNs are the default mode
network; dorsal attention network; executive con-
trol network; salience network; and sensorimotor,
visual, and auditory systems (22). Analyses of faster
resting-state fMRI further have revealed tempo-
rally independent functional modes (extended
ICNs) (Fig. 2C),whichmapmore precisely to task-
evoked modules than conventional ICNs, some
of which contain submodules overlapping with
other modes (25).

Setting aside the many interesting questions
about ICNs (e.g.,why are ICNsnot at restwhen they
are not needed?), we note that most ICNs incorpo-
rate two ormore segregated submoduleswithin and
between hemispheres. A submodule (subnetwork)
within an ICN comprises synchronously active

Fig. 3. Context-sensitive divergence. (A) Task-dependent reconfiguration
of functional connectivity was found predominantly in long-range intrahemi-
spheric connections (31). All structural connections (top row), especially long-
range intrahemispheric connections (bottom row), are colored according to the
functional connectivity during rest (rsFC, left column) and task-dependent
deviations in functional connectivity from rest during attention (DasFC, middle
column) and memory (DmsFC, right column). In the maps of intrahemispheric
connections (bottom row), thicker lines in the resting state indicate stronger
rsFC; thicker lines during attention indicate larger decreases in FC, and thicker
lines during memory indicate larger increases in FC relative to rest, averaged
across participants. An overall decrease in functional connectivity was observed
during the attentional task, whereas a memory task elicited an overall increase
of functional connectivity. Furthermore, the functional connectivity of long-
range intrahemispheric pathways decreased to a greater degree during atten-
tional demands and increased during thememory task, compared with the other
subgroups of connections during task performance. This suggests that global

integration by modulating long-range connectivity is crucial for task-dependent
functions. (B) Functional MRI activations during the preparatory phase of a
visual discrimination task for color and motion (32) were used as nodes for
graph analysis (top left). FDR, false discovery rate. These nodes were decom-
posed into either core nodes (red in top middle) or peripheral nodes (blue in top
right) according to their connection densities. Visual areas V4 (color processing)
and V5/hMT (motion processing) were categorized as peripheral nodes. Func-
tional networks during the preparatory period before either correct or incorrect
responses for color and motion stimuli are shown in the bottom left (black dots
in circle maps indicate nodes and colored lines for task-dependent functional
connectivity). During both color and motion discrimination tasks, erroneous
preparation trials had significantly lower core centrality, a global measure of the
core’s ability to integrate and control information flow (bottom right). This
finding indicates that aberrant core-periphery interactions may be responsible
for the incorrect responses in this study. Redrawn from (31) for (A) (courtesy of
A. M. Hermundstad) and modified with permission from (32) for (B).
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exceptions, notably connections between the somatomotor and
cingulo-opercular systems, few connections are identified among
the rich club nodes that integrate across systems. This phenom-

enon is captured in our community (C) and distribution (D)
indices, which show that few nodes had strengths equal to that of
the structural rich club (Figures 4d and 4e).

Figure 3. Rich club phenomena in structural group network of adults. (a) Regions comprising the structural rich club are displayed on an
average brain surface. Degree k.=14 was used to define rich club nodes, reflecting the peak value observed in the weighted rich club coefficient
curve in (b). Results highlight the involvement of medial parietal/PCC, superior frontal/ACC, insula, and inferior temporal cortex. (b) Rich club
coefficients relative to random are shown as weighted in red and as unweighted in dark red. Significant values (p,.05) are signified with an asterisk.
(c) Rich club regions from (a) are colored according to community assignments. Below, a spring embedded graph shows rich club nodes and links
between them, reflecting a high level of integration between systems. (d, e) Rich club regions with a high Community Index (C .=3) and a high
Distribution Index (D.=10) are colored. A large proportion of regions are colored, reflecting high levels of integration.
doi:10.1371/journal.pone.0088297.g003

Figure 4. Rich club phenomena in functional group network of adults. (a) Functional rich club regions were defined as having degree
k.= 14, equal to the degree threshold for the structural rich club. In agreement with prior research, these results highlight the involvement of medial
parietal/PCC, medial frontal/ACC, and insula cortex. (b) Rich club coefficients relative to random are shown as weighted in red and as unweighted in
dark red (*where both curves are significant, p,.05). (c) Rich club regions are colored according to which community they belong to. Below, spring
embedded graph of rich club nodes and links between them, reflecting a low level of integration between systems. (d, e) Rich club regions with a
high Community Index (C.=3) and regions with a high Distribution Index (D.= 10) are colored. Nearly all regions are subthreshold, indicating very
low levels of integration.
doi:10.1371/journal.pone.0088297.g004
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than fixed structural ones as may be the case for acquired
synaesthesia [52]. Broadly consistent with this, it has been
reported that subjects under the influence of psilocybin
have objectively worse colour perception performance
despite subjectively intensified colour experience [53].

To summarize, we presented a new method to analyse
fully connected, weighted and signed networks and applied
it to a unique fMRI dataset of subjects under the influence
of mushrooms. We find that the psychedelic state is associ-
ated with a less constrained and more intercommunicative
mode of brain function, which is consistent with descriptions
of the nature of consciousness in the psychedelic state.

7. Methods
7.1. Dataset
A pharmacological MRI dataset of 15 healthy controls was used
for a proof-of-principle test of the methodology [54]. Each subject
was scanned on two separate occasions, 14 days apart. Each scan
consisted of a structural MRI image (T1-weighted), followed by a
12 min eyes-close resting-state blood oxygen-level-dependent
(BOLD) fMRI scan which lasted for 12 min. Placebo (10 ml
saline, intravenous injection) was given on one occasion and psi-
locybin (2 mg dissolved in 10 ml saline) on the other. Injections
were given manually by a study doctor situated within the scan-
ning suite. Injections began exactly 6 min after the start of the
12-min scans, and continued for 60 s.

7.1.1. Scanning parameters
The BOLD fMRI data were acquired using standard gradient-echo
EPI sequences, reported in detail in reference [54]. The volume
repetition time was 3000 ms, resulting in a total of 240 volumes
acquired during each 12 min resting-state scan (120 pre- and 120
post-injection of placebo/psilocybin).

7.1.2. Image pre-processing
fMRI images were corrected for subject motion within individual
resting-state acquisitions, by registering all volumes of the

functional data to the middle volume of the acquisition using
the FMRIB linear registration motion correction tool, generating
a six-dimension parameter time course [55]. Recent work demon-
strates that the six parameter motion model is insufficient to
correct for motion-induced artefact within functional data,
instead a Volterra expansion of these parameters to form a 24
parameter model is favoured as a trade-off between artefact cor-
rection and lost degrees of freedom as a result of regressing
motion away from functional time courses [56]. fMRI data
were pre-processed according to standard protocols using a
high-pass filter with a cut-off of 300 s.

Structural MRI images were segmented into n ¼ 194 cortical
and subcortical regions, including white matter cerebrospinal
fluid (CSF) compartments, using FREESURFER (http://surfer.nmr.
mgh.harvard.edu/), according to the Destrieux anatomical atlas
[57]. In order to extract mean-functional time courses from
the BOLD fMRI, segmented T1 images were registered to the
middle volume of the motion-corrected fMRI data, using bound-
ary-based registration [58], once in functional space mean
time-courses were extracted for each of the n ¼ 194 regions in
native fMRI space.

7.1.3. Functional connectivity
For each of the 194 regions, alongside the 24 parameter motion
model time courses, partial correlations were calculated between
all couples of time courses (i,j ), non-neural time courses (CSF,
white matter and motion) were discarded from the resulting
functional connectivity matrices, resulting in a 169 region corti-
cal/subcortical functional connectivity corrected for motion
and additional non-neural signals (white matter/CSF).

7.2. Persistent homology computation
For each subject in the two groups, we have a set of persistence
diagrams relative to the persistent homology groups Hn. In this
paper, we use the H1 persistence diagrams of each group to
construct the corresponding persistence probability densities
for H1 cycles.

Filtrations were obtained from the raw partial-correlation
matrices through the PYTHON package Holes and fed to javaplex
[46] via a Jython subroutine in order to extract the persistence

(a) (b)

Figure 6. Simplified visualization of the persistence homological scaffolds. The persistence homological scaffolds Hp
pla (a) and Hp

psi (b) are shown for comparison.
For ease of visualization, only the links heavier than 80 (the weight at which the distributions in figure 5a bifurcate) are shown. This value is slightly smaller than
the bifurcation point of the weights distributions in figure 5a. In both networks, colours represent communities obtained by modularity [49] optimization on the
placebo persistence scaffold using the Louvain method [50] and are used to show the departure of the psilocybin connectivity structure from the placebo baseline.
The width of the links is proportional to their weight and the size of the nodes is proportional to their strength. Note that the proportion of heavy links between
communities is much higher (and very different) in the psilocybin group, suggesting greater integration. A labelled version of the two scaffolds is available as GEXF
graph files as the electronic supplementary material. (Online version in colour.)
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Networks, as efficient representations of complex systems, have appealed to
scientists for a long time and now permeate many areas of science, including
neuroimaging (Bullmore and Sporns 2009 Nat. Rev. Neurosci. 10, 186–198.
(doi:10.1038/nrn2618)). Traditionally, the structure of complex networks has
been studied through their statistical properties and metrics concerned with
node and link properties, e.g. degree-distribution, node centrality and modular-
ity. Here, we study the characteristics of functional brain networks at the
mesoscopic level from a novel perspective that highlights the role of inhomo-
geneities in the fabric of functional connections. This can be done by focusing
on the features of a set of topological objects—homological cycles—associated
with the weighted functional network. We leverage the detected topological
information to define the homological scaffolds, a new set of objects designed to
represent compactly the homological features of the correlation network and
simultaneously make their homological properties amenable to networks theor-
etical methods. As a proof of principle, we apply these tools to compare resting-
state functional brain activity in 15 healthy volunteers after intravenous infusion
of placebo and psilocybin—the main psychoactive component of magic mush-
rooms. The results show that the homological structure of the brain’s functional
patterns undergoes a dramatic change post-psilocybin, characterized by the
appearance of many transient structures of low stability and of a small
number of persistent ones that are not observed in the case of placebo.

1. Motivation
The understanding of global brain organization and its large-scale integration
remains a challenge for modern neurosciences. Network theory is an elegant frame-
work to approach these questions, thanks to its simplicity and versatility [1]. Indeed,
in recent years, networks have become a prominent tool to analyse and understand
neuroimaging data coming from very diverse sources, such as functional magnetic
resonance imaging (fMRI), electroencephalography and magnetoencephalography
[2,3], also showing potential for clinical applications [4,5].

A natural way of approaching these datasets is to devise a measure of dynami-
cal similarity between the microscopic constituents and interpret it as the strength
of the link between those elements. In the case of brain functional activity, this often
implies the use of similarity measures such as (partial) correlations or coherence
[6–8], which generally yield fully connected, weighted and possibly signed adja-
cency matrices. Despite the fact that most network metrics can be extended to
the weighted case [9–13], the combined effect of complete connectedness and
edge weights makes the interpretation of functional networks significantly
harder and motivates the widespread use of ad hoc thresholding methods
[7,14–18]. However, neglecting weak links incurs the dangers of a trade-off

& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.



Fig. 2. Age effects on Functional Connectivity Dynamics. Correlations between FC 
networks observed at different times t1 and t2 during resting state are compiled into FCD 
matrices (cf. Figure 1B). (A) FCD matrices for subjects of increasing age (window size 
τ = 60 s, see Fig. S2 for other τ-s). Blocks of large inter-network correlation indicate 
epochs in which FC is stable (FCD knots), separated by transients of faster FC 
reconfiguration (FCD leaps). Visual inspection suggested that FCD knots lasted longer 
with increasing age. This is confirmed by computing the rates of FC reconfiguration dτ, 
or FCD speed. (B) Distributions of FCD speed, shown here for two representative 
subjects (log-log scale, pooled window sizes 12 s ≤ τ < 31 s) displayed a peak at a value 
dtyp (typical FCD speed) and a fat left tail, reflecting an increased probability with respect to 
chance level to observe short FCD steps (95% confidence intervals are shaded: red, 
empirical; gray, chance level). (C) The FCD speed dtyp decreased with age (see Fig. S3 for 
larger τ-s). The FC space was seemingly explored through an anomalous random process 
in which short steps were followed by short steps with large probability (sequential 
correlations), leading to clustered trajectories (panel D, top). This contrasts with a 
standard random process, visiting precisely the same FC configurations but without long-
range correlations (panel D, bottom). (E-F) The persistence of FCD could be proved 
through a Detrended Fluctation Analysis (DFA). (E) DFA log-log plots for two 
representative subjects (τ = 12 s, see Fig. S4 for DFA at other τ-s). Shadings correspond 
to the inter-quartile range for the probability densities of the fluctuation strength at 
different scales of observation, estimated prior to maximum-likelihood fitting (plotted 
dots give the mean values). DFA exponents αDFA are generally larger than 0.5, indicating 
anomalously persistent fluctuations, and are larger for elderly than for young subjects 
(panel F, two groups: N = 26, 18-25y; and 57-80y, N = 33; p < 0.001, U Mann Whitney). 
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Figure 3. Competitive Spreading
(A) Schematic showing how two simultaneous perturbations (indicated by arrows) develop into competing cascades.

(B, D, and F) The competitiveness, diversity, and conformity of individual nodes.

(C and E) Themean competitiveness and diversity of resting state networks, expressed as a Z score relative to a null distribution in which the assignment of nodes

is permuted. Positive Z scores indicate greater competitiveness and diversity than expected by chance.

(G) Relationship between node degree and conformity.

Neuron 86, 1518–1529, June 17, 2015 ª2015 Elsevier Inc. 1523

between association weight and empirical functional connectiv-
ity (r = 0.41). Overall, these correlations between predicted and
empirical functional connectivity compare favorably to many
other computational ‘‘forward’’ models, including neural mass
models (Honey et al., 2009), random walk/diffusion models (Bet-
zel et al., 2013; Abdelnour et al., 2014), and routing models (Goñi
et al., 2014). Similar to those models, the present spreading
model is even better at predicting functional connectivity for sin-
gle hemispheres (r = 0.47 for left, r = 0.49 for right), most likely
due to the inherent limitations of computational tractography
for inferring inter-hemispheric anatomical projections (see Meth-
odological Considerations for more discussion).

DISCUSSION

In summary, these findings offer a dynamic view of spreading
processes on the human connectome. The connectivity of the
brain shapes and constrains spreading patterns, revealing a
set of anatomical design principles underlying the emergence
of global dynamics. In particular, the present report demon-
strates that (i) rapid spreading is mainly facilitated by a compact
core of high-degree hubs and central paths, (ii) cooperative
relationships among RSNs are enabled by the shortest path

structure of the network, and (iii) the associative properties of
polysensory areas and subnetworks arise from their ability to
integrate multiple cascades. These architectural features give
rise to highly organized spreading patterns, including function-
ally relevant interplay between RSNs. The three scenarios
presented here—single seed, cooperative, and competitive
spreading—open new perspectives on the coexistence of func-
tional segregation and integration in brain networks.

Network Structure Shapes Spreading
Our results reveal that hubs and a backbone of pathways domi-
nate early spreading, serving to outline the configuration of the
resulting cascade. These data contribute to growing literature
on the importance of hub nodes, which are disproportionately
important inmultiple cognitive domains (Cole et al., 2013; Fornito
et al., 2012; Crossley et al., 2013), while disruption of hub con-
nectivity is increasingly recognized as a hallmark of neurological
and psychiatric disorders (Rubinov and Bullmore, 2013; Stam,
2014). Likewise, the pathways that support early spreading are
reminiscent of a high-capacity backbone of pathways reported
in previous studies (van den Heuvel et al., 2012). These findings
offer a possible explanation for why hubs and central pathways
are so important: across all possible starting points, cascades

Figure 4. Predicting Functional Connectivity
For the n -seed competitive scenario, functional connectivity is operationalized as the proportion of times two nodes participate in the same cascade

(‘‘association weight’’).

(A) Relationship between the number of seeds and the correlation between empirical and predicted functional connectivity.

(B) Empirical and predicted functional connectivity matrices.

(C) Edge-wise relationship between empirical and predicted functional connectivity, for the whole brain, as well as for individual hemispheres (rh, right hemi-

sphere; lh, left hemisphere).
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Highlights  
- We use a simple model to study global 
spreading dynamics on human brain networks 

- Hub regions and a backbone of core pathways 
facilitate early spreading of cascades 

- Shortest path structure of brain networks 
accelerates spreading 

- Cascades integrate by converging on 
polysensory associative areas 
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role played by the topology in the spreading of the seizure all along the brain. Actually, the
mechanism underlying the seizure propagation is more subtle and the topological features of
the structural connectivity matrices are not sufficient themselves to fully explain the recruit-
ment of other areas occurring in the propagation. This means that if we try to stop the seizure
propagation cutting the strongest links outgoing the macroarea EZ+PZ, the number of funda-
mental links that we identify according to this procedure are more than the ones actually
responsible for the mechanism. When we apply the same criterion to the subgraph outgoing
the EZ only (case iv), thus disconnecting the strongest links, we are able indeed to design an
effective targeted disconnection. Due to the distribution of the weights of the structural con-
nectivity matrices, connections with biggest weights turn out to be easy to recruit. The least
invasive method identifying the minimal number of pathways, along which the seizure propa-
gates, is the Linear Stability Analysis (case v), that univocally identifies, via the calculation of
the stability of the system in presence of perturbations (represented by the seizures), the most
unstable directions along which the recruitment and the seizure spreading take place. These
most unstable directions, that are represented by the links connecting different populations,
are often the strongest links outgoing the epileptogenic zone. In particular this is always true
when the epileptogenic zone is composed by a single area, i.e. a single node.

However, it is worth noticing that purely structural information is not sufficient to predict
the propagation and eventual stopping of the seizure, and the availment of a mathematical
model is required to predict correctly the least invasive intervention. To demonstrate this, we

Fig 3. Comparison between the results obtained with 5 different lesioning procedures for each of the 15 analyzed
patients. In particular it is shown the numbers of links that are cut in order to stop the seizure propagation, if i) the entire
EZ is removed (black dots); ii) random cuts are done (red diamonds); iii) the strongest links outgoing the macroarea
(EZ + PZ) are removed; iv) the strongest links outgoing the EZ are cut; v) selected lesions are done following Linear
Stability Analysis indications (green stars). The data for the case (ii) are calculated averaging over 5 different realizations
of random lesioning procedures. Patients are ordered according to the extension of their EZ: the focus is represented as a
single node for patients cj-pg; 2 nodes for patients ac-ml; 3 nodes for patients cv and fbo; 4 nodes for patients jc-sf; 6
nodes for rb.

https://doi.org/10.1371/journal.pcbi.1006805.g003

Controlling seizure propagation in large-scale brain networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006805 February 25, 2019 10 / 23

addition to the removal of the node itself. Fig 2 shows the connectivity matrix of an epilepto-
genic brain (light blue links) with the EZ consisting of one area, where the set of connections
outgoing the focus is highlighted in blue and pink. The targeted disconnection method aims at
interrupting only those nerve pathways that allow a seizure to propagate and corresponds in
this framework to the resections of the few pink links outgoing the EZ selected via the Linear
Stability Analysis procedure. In Fig 3 we compare the removal of: i) all the links outgoing the
epileptogenic zone (corresponding to the standard clinical resection); ii) a set of randomly
chosen links outgoing the epileptogenic zone; iii) the strongest links outgoing the macro-area
composed by epileptogenic and propagation zones; iv) the strongest links outgoing the epilep-
togenic zone; v) links selected via the Linear Stability Analysis procedure. Here strongest links
refer to the connections with largest weights. Since the connectivity matrix is normalized so
that the maximum value is one, the strongest links are of orderOÖ1Ü, while are not considered
as strongest links those with weights of order of magnitudes o(1). From a computational point
of view the virtual ablation of a link corresponds, in all the mentioned cases, to the removal of
the corresponding row and column in the structural connectivity matrix of the investigated
epileptogenic brain.

The random choice of the links to be cut among the subgraph connecting the EZ with the
rest of the network (case ii), represents the mathematical procedure that better approximate
the results of standard clinical resections, where all the subgraph is removed, since a big
amount of connections needs to be resected in order to stop the seizure propagation and to
prevent the emergence of epileptic symptomatic seizures. On the other hand, if we restrict our
attention to the connections outgoing the region composed of both EZ and PZ (case iii), the
strength of the links in this macro-area might be a priori a good indicator to understand the

Fig 2. Scheme for comparison of standard resection methods, where the entire epileptogenic zone (EZ) is
removed during surgical operation, versus lesioning minimal number of links. Panel (a): The connectivity matrix is
illustrated for an epileptogenic brain with the EZ consisting of one area (black). The outgoing connections of the EZ
are blue and pink, connecting red and dark grey areas respectively, and they are all removed during the current
surgical procedures of disconnecting the EZ. Targeted lesioning depicts the minimal number of links that are sufficient
to be removed (pink) in order to stop the seizure, versus the total number of outgoing links from the EZs (blue) that
are removed during the resection of an entire EZ. Light blue links added in panel (b) represent the full connectivity of
the network. The size of the nodes reflects how strongly they are connected, and the width of the links correspond to
their weight. Unaffected nodes by any of the resection procedures are light grey and unaffected links are light blue.

https://doi.org/10.1371/journal.pcbi.1006805.g002

Controlling seizure propagation in large-scale brain networks
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systems, including activity-dependent5,6,11 
and activity-independent10 regulation of 
membrane conductances in the crustacean 
pyloric system; conductance modulation in 
crayfish20, Drosophila21 and mouse22 neurons 
by electrical activity; and activity-dependent 
regulation of excitatory23,24 and inhibitory25 
synaptic properties in rat cortical circuits.

The possibility that similar network out-
put may result from substantially different 
underlying mechanisms, which in turn could 
arise from activity-dependent and other tun-
ing mechanisms, immediately gives rise to 
a number of questions. Although there are 
numerous indications in both the experi-
mental and theoretical literature that intrinsic membrane cur-
rents7,8,21,26–31 and synaptic strengths32–36 may be homeostatically 
regulated, the regulatory processes observed in those studies are 
thought to occur at the level of a single neuron or synapse. In con-
trast, our study suggests that network performance, not individual 
neuronal activity or synaptic strength, might be the regulated prop-
erty. For an animal, it is presumably far more important that its 
behavior be appropriately regulated than that any given intrinsic or 
synaptic parameter have a specific value. But if network performance 
is the locus of homeostatic and developmental regulation, this raises 
a series of questions: (i) Can stable network performance arise from 
local stability rules that set the properties of single-neuron excit-
ability and/or synaptic strength? (ii) If local rules are not sufficient 
to maintain stable network output, are there monitors of network 
performance, such as sensory feedback from the target muscles, that 
are used developmentally to tune network output?

Comparison of the pyloric model networks to biological data
The main purpose of the simulations described here was to determine 
how tightly network parameters need to be regulated to produce a 
functional network output, not to study the pyloric network per se. 
However, the fact that the pyloric circuit has been well characterized 
experimentally allowed us to use experimental data to validate the 
pyloric model networks. Several properties of the model networks 
fit well with past experimental results. One is the relative strengths of 
the fast and slow synaptic connections from the AB/PD pacemaker 
to the LP and PY follower neurons. In pyloric model networks, the 
faster glutamatergic synapse to PY is equally likely to have any of 
the six maximal conductances tested in the database, whereas the 
slower cholinergic synapse from the AB/PD neuron to the PY neu-
ron has a strong preference for high conductances (Fig. 6c, top row). 
In contrast, the connection from the AB/PD pacemaker neuron to 
the LP neuron tends to consist of a strong fast synapse and a weak 
slow synapse. These findings reproduce experimental results that 
suggest a strong glutamatergic and weak cholinergic synapse from 

AB/PD to LP, and vice versa for the AB/PD-to-PY connection14,15. This 
configuration of relative strengths of the fast and slow synapses from 
the pacemaker favors the pyloric burst order AB/PD-LP-PY because it 
allows LP to rebound faster than PY after inhibition from AB/PD.

The synapse from PY to LP is another example of agreement 
between the model-network outputs and experimental data. This 
synapse tends to be strong in the model pyloric networks (Fig. 6c, far 
right), consistent with the finding that this synapse is relatively strong 
in the biological pyloric circuit19.

Some model pyloric networks contained synapses that had zero 
strength; these synapses may therefore appear to be redundant. 
However, seemingly redundant synapses in the pyloric circuit have 
been shown to stabilize periodic rhythm generation despite chaotic 
behavior of the neurons when isolated from the circuit. This is because 
an open network topology—in which at least one neuron receives no 
input from any of the other neurons—can generate a periodic rhythm 
only if none of the neurons in the circuit is chaotic37. The component 
neurons used here were all periodic in isolation, but it is conceivable 
that some of the open network configurations that generated pyloric 
rhythms in our simulations would not have done so if we had included 
chaotic neurons in our model-neuron pools.

Global implications
Although the pyloric rhythm of the crustacean stomatogastric nervous 
system was the specific example used here, we draw a general con-
clusion: that even tightly regulated network behavior can result from 
widely disparate sets of parameters in the processes that give rise to this 
behavior. This conclusion is relevant not only to the nervous system, 
but also to biochemical and signaling networks38–42, as parallel and 
interacting pathways also occur in these networks. It may be possible for 
any given network parameter to be highly variable in different cells or 
in different individuals, as long as an appropriate set of compensating 
changes has occurred. The challenge for future work will be to uncover 
not only the structure of the networks, but how a target level of network 
performance is encoded and maintained.

Figure 5  Similar model-network activity from 
different network properties. (a,b) Voltage traces 
from two model pyloric networks. Scale bars, 
0.5 s and 50 mV. (c) Selected membrane 
conductances (top) and synaptic conductances 
of the model network shown in a. (d) Selected 
membrane conductances (top) and synaptic 
conductances of the model network shown in b. 
The two networks generated very similar activity 
in spite of widely differing cellular and synaptic 
properties.
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and enhance behavioral and mental health, such as in individuals  
with major depressive disorder44.

Network analysis and modeling
Networks are phenomena of the natural, social and technological 
world that are studied across many disciplines with a common toolset 
provided by network science45. Perhaps most foundational is graph 
theory, a branch of mathematics that examines the properties of graphs 
or networks, defined as sets of nodes and edges that represent system 
elements and their interrelations46. In neuroscience, descriptive mea-
sures that report on local and global features of network topology have 
been widely applied across structural and functional data sets from 
multiple species. These analyses have consistently revealed nonrandom 
topological attributes, such as high clustering and short path length3,47, 
and network communities (modules) linked by highly connected hub 
nodes48 that are in turn densely linked, forming an integrative core49 
or rich club50. Recent investigations have examined more complex 
organizational features such as hierarchical organization51,52, the role 
of geometry and spatial embedding in large-scale anatomical con-
nectivity53, and the importance of considering relationships among 
multiple structural constraints when accounting for the emergence of 
significant network attributes54. Indeed, the brain is inherently a spa-
tially embedded network, and physical constraints resulting from that 
embedding underlie functionally important network characteristics, 
such as efficient network communication and information processing. 
The application of graph measures has also been critically examined 
with respect to sensitivity to node/edge definition, spatial and tempo-
ral resolution, and reliability and reproducibility across observations55. 
Important issues currently under development involve improved and 
domain-appropriate approaches for module (community) detection56, 
model-based inference of networks from observational data57, and 
statistically principled methods for network comparison across dif-
ferent individuals and in different conditions58.

More recently, methods from network science are expanding in new 
directions, going beyond descriptive accounts of network topology 
and toward addressing network dynamics, generative principles and 
higher order dependencies among nodes. One prominent example is 
the development of methods for assessing multi-scale organization 
in networks. This includes characterizing fluctuations in commu-
nity structure of networks across time59, and implementing dynamic 
processes on networks as a diagnostic tool for explicitly linking 
micro-scale features of network organization to macro-scale char-
acteristics of neurophysiological dynamics60. Yet another approach 
uses network science to ask questions about the processes that can 
potentially generate the topology of an empirical network. Such gen-
erative models can clarify the contributions of spatial embedding and 
other (non-spatial) wiring rules in shaping the network topology of 
the connectome61, and can also reveal potential factors driving the 
selection of functionally important network attributes62.  Finally, the 
application of concepts from algebraic topology (Fig. 3 ) attempts to 
discern non-random structure in networks by going beyond dyadic 
relations (two nodes linked by an edge) and considering non-dyadic, 
higher order relations among network nodes63–65, a goal that is com-
plementary to that motivating the use of graphs in which edges can 
link any number of nodes, or so-called hypergraphs66. This approach 
can identify non-random structure in structural connectivity of corti-
cal microcircuits67, such as unexpectedly high numbers of directed 
‘all-to-all’ connected cliques of neurons, or cavities in which edges 
are conspicuously absent68.

Time series analysis is a common basis for constructing edges  
in functional networks. Generally, different methods aim to extract 

covariance or correlation (hence delivering non-causal similarity-
based metrics of statistical dependence) and to estimate the direction 
and strength of causal influence. Although correlation-based metrics 
are generally simple to compute, the propensity of correlations to ‘fill 
in’ links among indirectly coupled nodes (transitive closure)69 tends 

Networka b

c

Simplex
0

1

2

3

Anatomy Clique

Cavity

Filtration and persistent homology

Edge weight or time

Figure 3 Algebraic topology and simplicial complexes. (a) Left, the traditional 
way in which to study networked systems including the brain is to examine 
patterns in pairwise relationships between nodes (dyads). Indeed, the dyad 
has traditionally been the fundamental unit of interest in graph theory 
and network science. Here we show an example brain network, composed 
exclusively of dyads. Right, in many cases, however, neural systems appear to 
employ higher order interactions139, which increase the complexity of neural 
codes that produce the wide range of behaviors observed in these systems140. 
To study these higher order interactions, one must expand one’s worldview to 
include units of interest that exceed the simple dyad. Using recent advances 
in the field of applied algebraic topology, we can study so-called simplicial 
complexes, which are generalizations of graphs that encode non-dyadic  
relationships63. Here we show representations of a zero-simplex (a node),  
a one-simplex (an edge between two nodes), a two-simplex (a filled triangle), 
etc. (b) Left, we can study the location of these simplices in brain networks, 
from the small scale of neurons to the large scale of brain regions. For  
example, we show a toy simplicial complex embedded in the human brain, 
and containing a zero-simplex, several one-simplices, a two-simplex and 
a three-simplex. Right, when doing so, it is interesting to characterize the 
locations of cliques (all-to-all connected subgraphs of any size) and cavities 
(a collection of n-simplices that are arranged so that they have an empty  
geometric boundary), which are structurally predisposed to be critical for in 
integrated (cliques) versus segregated (cavities) codes and computations.  
Here we show a two-clique (top) and a cavity bounded by four one-simplices 
(bottom). (c) It is also often interesting to study how networks evolve in  
time or how their internal structure depends on the weight of the edges 
between nodes. In these and similar scenarios, we can apply a powerful tool 
from algebraic topology called a filtration, which can represent a weighted 
simplicial complex as a series of unweighted simplicial complexes. We can 
then trace the evolution of specific cavities from one complex (one time point 
or one edge weight value) to another, as well as locate the moment of their 
creation or collapse. Collectively, this is called the persistent homology  
of the weighted simplicial complex, and it can be statistically quantified 
using a collection of functions called Betti curves, which record the number 
of cavities in each dimension. Here we show a filtration on edge weight,  
which begins with all nodes being disconnected because no edges exceed 
a threshold value T. At subsequent points along the filtration, those nodes 
are connected by simplices that are composed of edges of weight greater 
than or equal to T. This same sort of structure can be observed in a filtration 
of a growing network over time: the filtration begins with all nodes being 
disconnected because no edges exist. At subsequent points along the 
filtration, those nodes are connected by simplices that are composed  
of edges that have grown at later time points. Thus, filtrations allow the 
investigator to assess the organization of weighted simplicial complex 
representations of brain structure and dynamics as a function of edge  
weight, or as a function of time.

than fixed structural ones as may be the case for acquired
synaesthesia [52]. Broadly consistent with this, it has been
reported that subjects under the influence of psilocybin
have objectively worse colour perception performance
despite subjectively intensified colour experience [53].

To summarize, we presented a new method to analyse
fully connected, weighted and signed networks and applied
it to a unique fMRI dataset of subjects under the influence
of mushrooms. We find that the psychedelic state is associ-
ated with a less constrained and more intercommunicative
mode of brain function, which is consistent with descriptions
of the nature of consciousness in the psychedelic state.

7. Methods
7.1. Dataset
A pharmacological MRI dataset of 15 healthy controls was used
for a proof-of-principle test of the methodology [54]. Each subject
was scanned on two separate occasions, 14 days apart. Each scan
consisted of a structural MRI image (T1-weighted), followed by a
12 min eyes-close resting-state blood oxygen-level-dependent
(BOLD) fMRI scan which lasted for 12 min. Placebo (10 ml
saline, intravenous injection) was given on one occasion and psi-
locybin (2 mg dissolved in 10 ml saline) on the other. Injections
were given manually by a study doctor situated within the scan-
ning suite. Injections began exactly 6 min after the start of the
12-min scans, and continued for 60 s.

7.1.1. Scanning parameters
The BOLD fMRI data were acquired using standard gradient-echo
EPI sequences, reported in detail in reference [54]. The volume
repetition time was 3000 ms, resulting in a total of 240 volumes
acquired during each 12 min resting-state scan (120 pre- and 120
post-injection of placebo/psilocybin).

7.1.2. Image pre-processing
fMRI images were corrected for subject motion within individual
resting-state acquisitions, by registering all volumes of the

functional data to the middle volume of the acquisition using
the FMRIB linear registration motion correction tool, generating
a six-dimension parameter time course [55]. Recent work demon-
strates that the six parameter motion model is insufficient to
correct for motion-induced artefact within functional data,
instead a Volterra expansion of these parameters to form a 24
parameter model is favoured as a trade-off between artefact cor-
rection and lost degrees of freedom as a result of regressing
motion away from functional time courses [56]. fMRI data
were pre-processed according to standard protocols using a
high-pass filter with a cut-off of 300 s.

Structural MRI images were segmented into n ¼ 194 cortical
and subcortical regions, including white matter cerebrospinal
fluid (CSF) compartments, using FREESURFER (http://surfer.nmr.
mgh.harvard.edu/), according to the Destrieux anatomical atlas
[57]. In order to extract mean-functional time courses from
the BOLD fMRI, segmented T1 images were registered to the
middle volume of the motion-corrected fMRI data, using bound-
ary-based registration [58], once in functional space mean
time-courses were extracted for each of the n ¼ 194 regions in
native fMRI space.

7.1.3. Functional connectivity
For each of the 194 regions, alongside the 24 parameter motion
model time courses, partial correlations were calculated between
all couples of time courses (i,j ), non-neural time courses (CSF,
white matter and motion) were discarded from the resulting
functional connectivity matrices, resulting in a 169 region corti-
cal/subcortical functional connectivity corrected for motion
and additional non-neural signals (white matter/CSF).

7.2. Persistent homology computation
For each subject in the two groups, we have a set of persistence
diagrams relative to the persistent homology groups Hn. In this
paper, we use the H1 persistence diagrams of each group to
construct the corresponding persistence probability densities
for H1 cycles.

Filtrations were obtained from the raw partial-correlation
matrices through the PYTHON package Holes and fed to javaplex
[46] via a Jython subroutine in order to extract the persistence

(a) (b)

Figure 6. Simplified visualization of the persistence homological scaffolds. The persistence homological scaffolds Hp
pla (a) and Hp

psi (b) are shown for comparison.
For ease of visualization, only the links heavier than 80 (the weight at which the distributions in figure 5a bifurcate) are shown. This value is slightly smaller than
the bifurcation point of the weights distributions in figure 5a. In both networks, colours represent communities obtained by modularity [49] optimization on the
placebo persistence scaffold using the Louvain method [50] and are used to show the departure of the psilocybin connectivity structure from the placebo baseline.
The width of the links is proportional to their weight and the size of the nodes is proportional to their strength. Note that the proportion of heavy links between
communities is much higher (and very different) in the psilocybin group, suggesting greater integration. A labelled version of the two scaffolds is available as GEXF
graph files as the electronic supplementary material. (Online version in colour.)
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Figure 1: Cliques are features of local neighborhoods in structural brain networks. (a) Di↵usion
spectrum imaging (DSI) data can be summarized as a network of nodes corresponding to brain regions, and
weighted edges corresponding to the density of white matter streamlines reconstructed between them. Here
we present a group-averaged network, where each edge corresponds to the mean density of white matter
streamlines across eight subjects scanned in triplicate. We show the network at an edge density ⇢ = 0.25,
and display its topology on the brain (top), and on a circle plot (bottom). This and all brain networks are
drawn with BrainNetViewer [27]. (b) All-to-all connected subgraphs on k nodes are called k-cliques. For
example, 2-, 3-, and 4-cliques are shown both as schematics and as features of a structural brain network.
(c) A maximal 4-clique has 3-, 2-, and 1-cliques as faces. (d) For statistical validation, we construct a
minimally wired null model by linking brain regions by edge weights equal to the inverse of the Euclidean
distance between nodes corresponding to brain region centers. Here we show an example of this scheme on
15 randomly chosen brain regions.

Cliques in the Human Structural Connectome

Here, we use the group-averaged network thresholded at an edge density (⇢) of 0.25 for computational
purposes and for consistency with prior studies [20]. Results at other densities are similar, and details can be
found in the Supplimentary Information. As a null-model, we use minimally wired networks (Fig. 1d) created
from assigning edge weights to the inverse Euclidean distance between brain region centers (see Methods)
observed in each of 24 scans. This model mimics the tendency of the brain to conserve wiring cost by giving
edges connecting physically close nodes higher weight than edges between distant nodes.

For each network, we now enumerate all maximal k-cliques. Recall that a k-clique is a set of k nodes having
all pairwise connections (see Fig. 1b for 2-, 3-, and 4-cliques representing edges, triangles, and tetrahedra,
respectively.) By definition, a subgraph of a clique will itself be a clique of lower dimension, called a face. A
maximal clique is one that is not a face of any other (see Fig. 1c for a maximal 4-clique, which contains 3-,
2-, and 1-cliques as faces).

To understand the anatomical distribution of maximal cliques in both real and null model networks, we
count the number of maximal k-cliques in which a node is a member, and refer to this value as the node
participation, Pk(v) (see Methods). Summing over all k gives the total participation, P (v). We observe that
the distribution of maximal clique degrees is unimodal in the minimally wired null model and bimodal in the
empirical data (see Fig. 2a). Anatomically, we observe a general progression of maximal clique participation
from anterior to posterior regions of cortex as we detect higher degrees (Fig. 8). Indeed, maximal cliques of

3

Figure 4: Tracking clique patterns through a network filtration reveals key topological cavities in
the structural brain network. (a) Example filtration of a network on 15 nodes shown in the brain across
edge density (⇢). Blue line on the axis indicates the density of birth (⇢birth) of the 2D cavity surrounded by
the green minimal cycle. As edges are added, 3-cliques (cyan) form and shrink the cavity and consequentially
the minimal green cycle is now four nodes in size. Finally, the orange line marks the time of death (⇢death)
when the cavity is now filled by 3-cliques. (b) Persistence diagram for the cavity surrounded by the green
cycle from panel (a). (c) Persistence diagrams for the group-averaged DSI (teal) and minimally wired null
(gray) networks in dimensions one (left) and two (right). Cavities in the group-averaged DSI network with
long lifetime or high death-to-birth ratio are shown in unique colors and will be studied in more detail. (d)
Box plots of the death-to-birth ratio ⇡ for cavities of two and three dimensions in the group-averagd DSI and
minimally wired null networks. Colored dots correspond to those highlighted in panel (c). The di↵erence
between ⇡ values for 3D topological cavities in the average DSI data versus the minimally wired null model
was not found to be significant. (e) Minimal cycles representing each persistent cavity at ⇢birth noted in
panels (c), (d) shown in the brain (top) and as a schematic (bottom).
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“fMRI is crap, the only thing that I believe in theory-driven hypothesis to be tested with small scale EEG experiments” 

Fictional quotes to explain the point:

“I don’t care about tiny-weeny details of this or that receptor, I want normative theories of cognitive 
control, in simple graph-theoretical terms”

“I am still not convinced in the role of large circuit networks, because when I ask they always give me small scale examples.”

“There is no hope we can reproduce or capture all connectivity/function, so let’s just fit HUGE models and predict” 

Eve Marder,  
High-density electroscope

My mom, 
Old school electrophysiologist

Jack Gallant, 
Bayesian modeller

Jon Cohen, 
Tsar of Cognitive Control

“There is no way there is a single all-purpose circuit that we learn from data, so we need to look for a multitude 
of task primitives ” Gary Marcus, 

Famous cognitive DL expert
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Drawing on the wealth of knowledge gleaned across the ancient field 
of physics, one realizes that one can only hope to answer these transla-
tional questions when one is able to construct a meaningful network-
based theory of brain function. A particularly promising example of 
such a theory lies in network control, a nascent field of engineering 
that has its roots in the 1970s110 and has been re-popularized more 
recently111. Network control combines estimates of network connec-
tivity with models of system dynamics to predict where in the system 
one should inject energy to push the system toward a desired target 
state or target dynamics112. Such a theory offers the fundamental 
backdrop against which to better understand cognitive control113, 
optimize stimulation for neurological disorders114, maintain and con-
trol levels of anesthesia115, and inform surgical or stimulation-based 
interventions such as in the case of epilepsy116 (Fig. 6d,e). Future 
efforts in using network neuroscience for translational purposes will 
hinge on the development of this or related theories to predict the 
effects of perturbations on network structure and function.

Crossing levels. Comprehensive multi-scale accounts of brain func-
tion are central objectives for neuroscience2, but how can such an 
understanding be achieved? Networks are not only encountered at  

virtually all scales of neurobiological systems, they also offer a promis-
ing theoretical and analytical framework for bridging these scales and 
for creating new insights about species commonalities and differences.  
A case in point is the potential for network models to facilitate  
integration across micro-, meso- and macro-connectomics. As dis-
cussed earlier, improvements in accuracy and scalability of macro-
connectome data acquisition and analysis may soon yield large-scale 
dense reconstructions of neural circuitry at the ultrastructural level 
(for example, see ref. 15). In parallel, statistics on cell types, lami-
nar profiles, connection probabilities, etc. can inform detailed circuit 
models with substantial gains in scale and coverage117–119. A combina-
tion of dense reconstruction and computational inference could then 
be used to construct cellular-resolution models of brain areas and 
eventually entire brain systems. Another case in point is the appli-
cation of network approaches to the comparison of networks across 
species120. Thus far, comparative studies have revealed some important 
commonalities (for example, shared attributes such as modules and 
hubs), but have also highlighted differences, such as in the organiza-
tion of inter-areal connectivity in the cerebral cortex of several primate 
species121,122. In future studies bridging scales and species, increas-
ingly sophisticated network science approaches for graph modeling, 
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Figure 7 Relations among anatomical connectivity and gene co-expression networks. Top left, matrix of anatomical connections among 213 mouse brain 
regions. Regions (nodes) with more than 44 distinct connections were considered hubs, and connections were classified as hublhub (rich), hublnonhub 
(feeder) or nonhublnonhub (peripheral). Bottom left, normalized expression levels of 17,642 genes across 213 brain regions. Genes with highly correlated 
expression profiles are placed near each other. Right, brain regions have been arranged around a circle, ordered by number of connections (bars) in each 
anatomical subdivision. Hubs are marked by red bars. The connection diagram traces anatomical connections between pairs of brain regions, color-coded  
by the corresponding gene coexpression value, after applying a correction for spatial distance. Statistical analysis revealed strongest gene coexpression 
among pairs of regions linked by reciprocal connections (as compared with unidirectional or unconnected pairs), as well as for rich connections linking  
hubs (as compared with feeder and peripheral connections). Genes driving correlations in expression in connections involving hub regions are functionally 
enriched in oxidative energy metabolism. Connectivity data derived from ref. 18. Reproduced from ref. 128, National Academy of Sciences.
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specifiestheshape.Acoordinatefreeapproachallowstopologythe
abilitytocomparedataderivedfromdifferentplatforms(different
coordinatesystems).

Thesecondkeyideaisthattopologystudiesthepropertiesof
shapesthatareinvariantunder‘‘small’’deformations.Todescribe
smalldeformations,imagineaprintedletter‘‘A’’onarubbersheet,
andimaginethatthesheetisstretchedinsomedirections.Theletter
willdeform,butthekeyfeatures,thetwolegsandtheclosedtriangle
remain.Inamoremathematicalsetting,theinvarianceproperty
meansthattopologically,acircle,anellipse,andtheboundaryofa
hexagonareallidentical,becausebystretchinganddeformingone
canobtainanyofthesethreeshapesfromanyother.Theproperty
thatthesefiguresshareisthefactthattheyareallloops.Thisinherent
propertyoftopologyiswhatallowsittobefarlesssensitivetonoise
andthus,possesstheabilitytopickouttheshapeofanobjectdespite
countlessvariationsordeformations.

Thethirdkeyideawithintopologyisthatofcompressedrepresen-
tationsofshapes.ImaginetheperimeteroftheGreatSaltLakewithall
itsdetail.Oftenacoarserrepresentationofthelake,suchasapoly-
gon,ispreferable.Topologydealswithfiniterepresentationsof
shapescalledtriangulations,whichmeansidentifyingashapeusing
afinitecombinatorialobjectcalledasimplicialcomplexoranetwork.
Aprototypicalexampleforthiskindofrepresentationistheiden-
tificationofacircleashavingthesameshapeasahexagon.The
hexagoncanbedescribedusingonlyalistof6nodes(withoutany
placementinspace)and6edges,togetherwithdataindicatingwhich
nodesbelongtowhichedges.Thiscanberegardedasaformof
compression,wherethenumberofpointswentfrominfinitetofinite.
Someinformationislostinthiscompression(e.g.curvature),butthe
importantfeature,i.e.thepresenceofaloop,isretained.

TopologicalDataAnalysisissensitivetobothlargeandsmallscale
patternsthatoftenfailtobedetectedbyotheranalysismethods,such
asprincipalcomponentanalysis,(PCA),multidimensionalscaling,
(MDS),andclusteranalysis.PCAandMDSproduceunstructured
scatterplotsandclusteringmethodsproducedistinct,unrelated
groups.Thesemethodologiessometimesobscuregeometricfeatures
thattopologicalmethodscapture.Thepurposeofthispaperisto
describeatopologicalmethodforanalyzingdataandtoillustrateits
utilityinseveralrealworldexamples.Thefirstexampleisontwo
differentgeneexpressionprofilingdatasetsonbreasttumors.Here
weshowthattheshapesofthebreastcancergeneexpressionnet-
worksallowustoidentifysubtlebutpotentiallybiologicallyrelevant
subgroups.Wehaveinnovatedfurtheronthetopologicalmethods
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byimplementingtheideaofvisuallycomparingshapesacrossmul-
tiplenetworksinthebreastcancercase.Thesecondexampleisbased
on20yearsofvotingbehaviorofthemembersoftheUSHouseof
Representatives.Hereweshowthattheshapesofthenetworks
formedacrosstheyearstellushowcohesiveorfragmentedthevoting
behaviorisfortheUSHouseofRepresentatives.Thethirdexampleis
definingthecharacteristicsofNBAbasketballplayersviatheirper-
formancestatistics.Throughtheseadvancedimplementationsof
topologicalmethods,wehaveidentifiedfinerstratificationsofbreast
cancerpatients,votingpatternsoftheHouseofRepresentativesand
the13playingstylesoftheNBAplayers.

Results
Mathematicalunderpinningsoftopologicaldataanalysis(TDA).
TDAappliesthethreefundamentalconceptsintopologydiscussed
intheintroductiontostudylargesetsofpointsobtainedfromreal-
worldexperimentsorprocesses.Thecoreproblemaddressedby
TDAishowtousedatasampledfromanidealizedspaceorshape
toinferinformationaboutit.Figure1illustrateshowourparticular
topologicalmethodbasedonageneralizedReebgraph
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sampledpointsfromahumanhand.Themethodtakesthreeinputs:
adistancemetric,oneormorefilterfunctions(realvaluedquantities
associatedtothedatapoints),andtworesolutionparameters

(‘‘resolution’’and‘‘percentoverlap’’),andconstructsanetworkof
nodeswithedgesbetweenthem.Thelayoutsofthenetworksare
chosenusingaforcedirectedlayoutalgorithm.Assuch,the
coordinatesofanyindividualnodehavenoparticularmeaning.
Onlytheconnectionsbetweenthenodeshavemeaning.Hence,a
networkcanbefreelyrotatedandplacedindifferentpositionswith
noimpactontheinterpretationoftheresults.Thenodesrepresent
setsofdatapoints,andtwonodesareconnectedifandonlyiftheir
correspondingcollectionsofdatapointshaveapointincommon
(seetheMethodssection).Thefilterfunctionsarenotnecessarily
linearprojectionsonadatamatrix,althoughtheymaybe.Weoften
usefunctionsthatdependonlyonthedistancefunctionitself,suchas
theoutputofadensityestimatororameasureofcentrality.One
measureofcentralityweuselaterisL-infinitycentrality,which
assignstoeachpointthedistancetothepointmostdistantfromit.
WhenwedouselinearprojectionssuchasPCA,weobtaina
compressedandmorerefinedversionofthescatterplotproduced
bythePCAanalysis.Notethatinfigure1,wecanrepresentadataset
withthousandsofpoints(pointsinamesh)in2dimensionsbya
networkof13nodesand12edges.Thecompressionwillbeeven
morepronouncedinlargerdatasets.

Theconstructionofthenetworkinvolvesanumberofchoices
includingtheinputvariables.Itisusefultothinkofitasacamera,

Figure1|Theapproachasappliedtoadatasetinouranalysispipeline.
A)A3Dobject(hand)representedasapointcloud.B)Afiltervalueis
appliedtothepointcloudandtheobjectisnowcoloredbythevaluesofthe
filterfunction.C)Thedatasetisbinnedintooverlappinggroups.D)Each
binisclusteredandanetworkisbuilt.
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